https://ogma.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Revealing changes in the microbiome of Symbiodiniaceae under thermal stress https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:46776 Wed 30 Nov 2022 13:21:41 AEDT ]]> Heat stress decreases the diversity, abundance and functional potential of coral gas emissions https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:41755 86%) significantly decreasing compared to control conditions. Additionally, almost 60% of the coral volatilome (or 52 BVOCs) could be assigned to four key functional groups based on their activities in other species or systems, including stress response, chemical signalling, climate regulation and antimicrobial activity. The total number of compounds assigned to these functions decreased significantly under heat stress for both A. intermedia (by 35%) and P. damicornis (by 64%), with most dramatic losses found for climatically active BVOCs in P. damicornis and antimicrobial BVOCs in A. intermedia. Together, our observations suggest that future heat stress events predicted for coral reefs will reduce the diversity, quantity and functional potential of BVOCs emitted by reef-building corals, potentially further compromising the healthy functioning of these ecosystems]]> Thu 24 Aug 2023 15:48:38 AEST ]]> Comparative volatilomics of coral endosymbionts from one- and comprehensive two-dimensional gas chromatography approaches https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:46262 Symbiodinium tridacnidorum and Durusdinium trenchii) using gas chromatography–mass spectrometry (GC–MS) and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC x GC–TOFMS). Seven chemical classes were detected by both instruments, the most common being aromatic hydrocarbons. However, GC x GC resolved seven times more BVOCs than GC–MS (290 vs. 40), with a higher proportion of compounds tentatively identified (173 vs. 14). Notably, nine chemical classes were exclusively identified by GC x GC, including alkane, alkene, aldehyde, ester, and nitrile BVOCs—each potentially fulfilling undescribed functions in marine organisms. The microalgal species investigated shared a large proportion of BVOCs, and this result was consistent across instruments (97 and 98% shared compounds via GC x GC and GC–MS, respectively), suggesting consistent retrieval of general patterns between instruments. This method comparison is the first of its kind in marine systems and confirms the greater analytical power of GC x GC, required to help resolve complex BVOC emissions and the identification of their roles in marine systems.]]> Mon 14 Nov 2022 15:58:32 AEDT ]]>